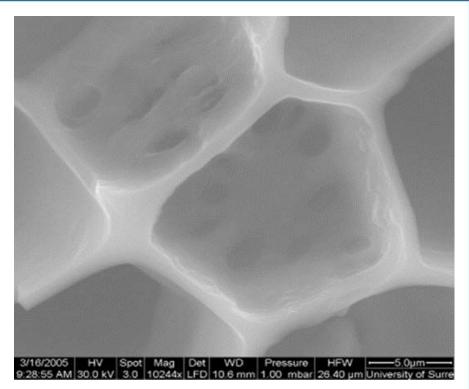


C-Cure Solutions

Treatment of Mercury and Heavy Metal Impacted Sites in Colombia

Tony Hutchings

Contact:


Tony@ccuresolutions.com

Alice Holt Lodge, Wrecclesham, Farnham, GU10 4LH Tel: +44 (0) 7557018496

Background to C-Cure Solutions

- Metal Treatment
 - Charcoal [Biochar] based products with >40% Metal Adsorption capacity by weight
- Organic contaminants
 - Activated carbons with >1200 m²/g
- Oil Absorbent products
- Coagulant and flocculant products
- Modified carbons specialist applications

- Spin-out of Forest Research (UK Government) and University of Surrey
- >\$4million USD invested in product development and testing
- 5 Patents central to IP

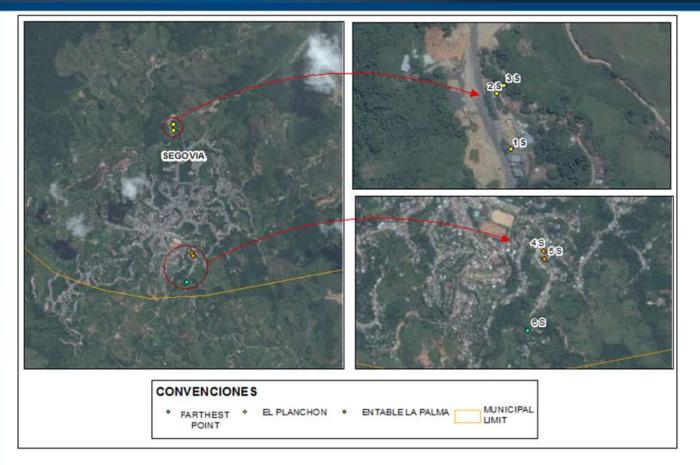
- Remediation of mine tailings and mine water discharges
 - Pb, Cu, Zn, Ni, Cd
 - Mercury
 - As, P
 - Oil Sands Bitumen Extraction
- Metal recovery products
- Treatment of Remediation of organic contaminants
- Treatment of drilling wastes for Oil and Gas

C-Cure Production

- Production of products yields heat which can be converted to electricity
- Large scale up to 50,000
 Tonnes per year processing capacity per unit
- Majority of C-Cure product range use renewable materials, yield renewable energy and a net carbon benefit

Towards Restoration of a Metal Contaminated Site


- Providing a solution that reduces erosion and stabilises the site is key
- Vegetation will improve soil conditions and stimulate succession towards greater biodiversity and higher ecological value
- Potential Land Re-use for Renewable Energy
- Recover valuable metals whilst treating waters

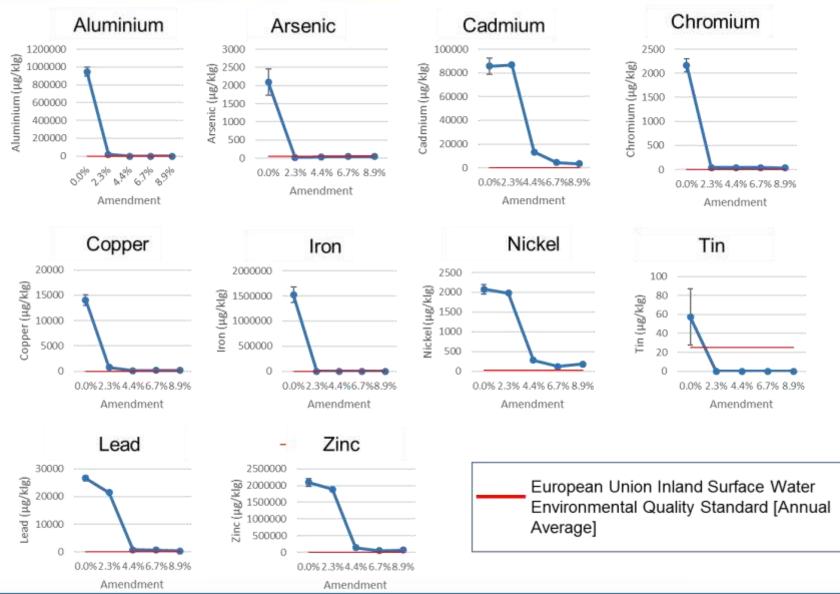


Mercury and Metal Contamination Trial on Samples from Colombia

Sampling Locations

- Segovia is a traditional mining town
- Estimated production >3000 kg of gold and >1,700 kg of silver per year (DAMMA, 2008)
- 6 samples from 2 gold mine sites

El Planchon Mine: Metal Contaminated Soil

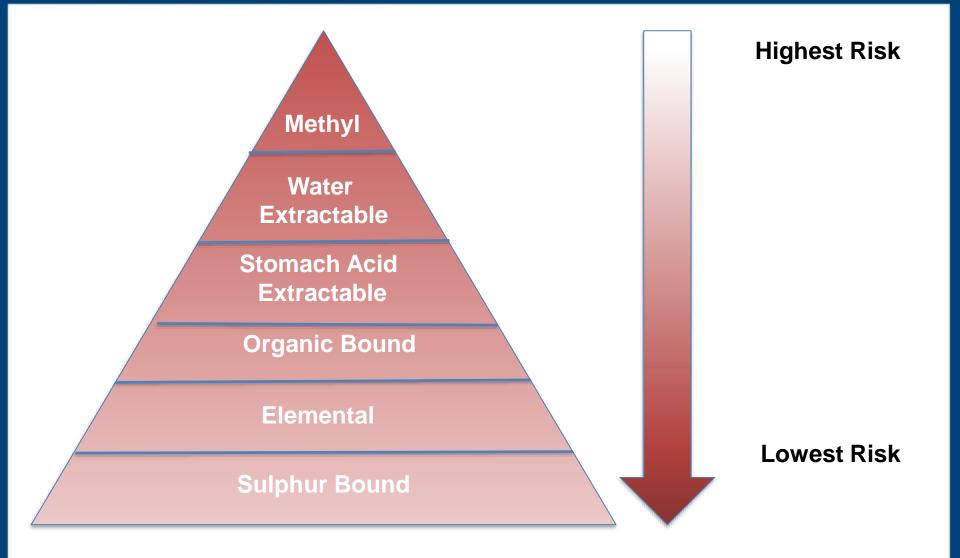


Metal	Total Concentration (mg/kg)	UK Soil Guideline Value (mg/kg)	Leachable Concentration (mg/kg)	EU Surface Water Standard (mg/l)
Aluminium	38516	n/a	947	0.015
Arsenic	224	32	2.09	0.05
Cadmium	97.4	10	85.8	0.00008
Chromium	22.8	130	2.17	0.0034
Copper	81.2	n/a	14.0	0.001
Iron	30565	n/a	1519	1.00
Nickel	4.72	130	2.08	0.02
Lead	3103	450	26.6	0.0072
Tin	1.53	n/a	0.06	0.025
Zinc	2741	n/a	2092	0.008

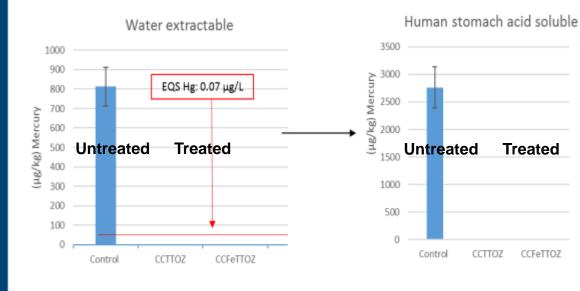
Sample taken in El Planchon, crossing the creek downstream the processing plant, very close to the neighbouring town houses.

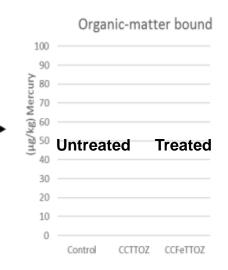
Treatment of Metal Contaminated Site

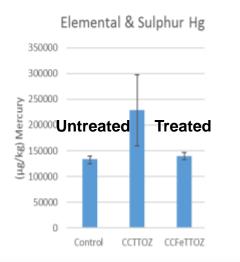
La Palma: Mercury Contaminated Tailings Waste


Inside the processing plant La Palma, a pile of tailings emerging as a by-product of the plant is stored. On top of this stack, the dry solid sample was taken.

Benefit plant involved in the gold mining process in Segovia, Antioquia




ure General Relative Risk of Mercury Fractions



C-Cure Treatment of Mercury

- 5% (wt/wt) Treatment Rate
- Needs to be optimised i.e. treatment rate may be much lower
- Would reduce costs

Case Studies: C-Cure Treatment of Metal Contaminated Sites

Case Study 1 Copper, Lead and Zinc Contaminated Site

The Problem: Metal Pollution of Surface water

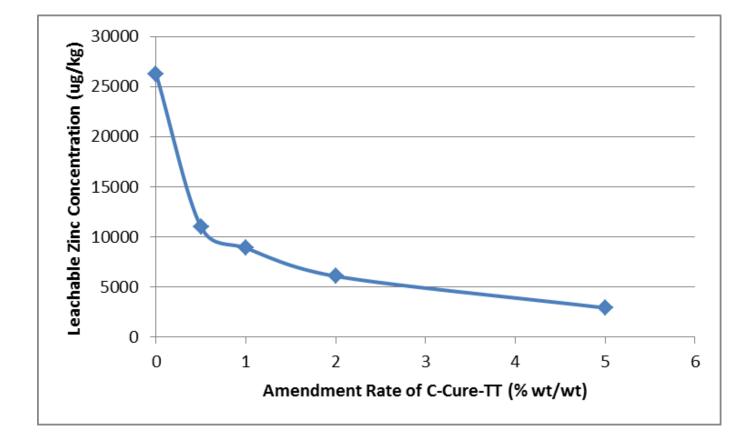
Determinand	Unit	EA Target Level	Maximum Value Recorded	Mean Value Recorded
Total Aluminium	μg/l	100 (combined with a pH of 5 to 5.4)	540	109
Dissolved Aluminium	μg/I	No value	3700	513
Dissolved Copper	μg/I	5	478	148
Total Copper	μg/l	20	610	244
Dissolved Iron	μg/l	1000	1600	106
Total Iron	μg/l	2000	16,000	2019
Dissolved Lead	μg/l	4	26	17.5
Total Lead	μg/l	75	37	24.1
Dissolved Nickel	μg/l	50	32	23.1
Total Nickel	μg/l	50	31	25.1
Dissolved Zinc	μg/l	10	3693	1488
Total Zinc	μg/l	30	27250	4418
Phosphorus	μg/l	60	100	18.9
Suspended Solids	mg/l	25,000	220	24.5
pH Value		-	5.73 (max) 4.66 (min)	5.1

Site causes contamination of river due to leaching, erosion and run-off

- Remediate the contaminated soil
- Reduce metal leaching to non-toxic levels
- Prevent further erosion by re-vegetation

Sacks with C-Cure Product

Incorporation of C-Cure Product



Site 2 Months after C-Cure Treatment

Effects of C-Cure Product on Leachable Zinc Concentrations

Reduction of Heavy Metal Uptake by Plants

Treatment	Foliar Metal uptake (mg kg ⁻¹ dry wt)			
	AI	Fe	Cu	Zn
Control	6,434	14,254	2,437	5,717
C-Cure Treated	160	406	56	287
% Reduction	97.5%	97%	98%	95%
Significance	<0.001	<0.001	<0.001	<0.001

- Remove plant toxicity
- Reduce metal uptake
- Prevent food chain transfer

Case Study 2

Former Lead and Zinc Mine

Lead and Zinc Mine

- High concentrations of leachable heavy metals
- Low pH (5)
- No vegetation
- Extensive Gully Erosion

Leachable metals

Cd: 0.34 mg/kg Cu: 3 mg/kg Pb: 160 mg/kg Zn: 127 mg/kg

C-Cure Treatment

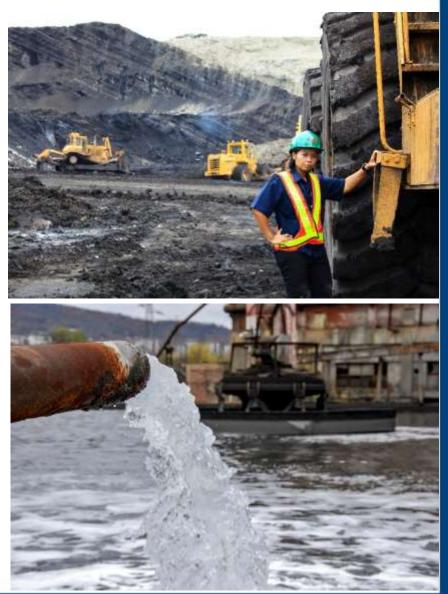
Treatment	Leachable Metals [mg/kg]						
	Cd	Cu	Pb	Zn			
Untreated	0.34	3.01	160	127			
C-Cure treated	0.01	0.05	11	3			
% Reduction	97%	99.5%	93%	97%			

POTENTIAL USES OF THE C-CURE TECHNOLOGY IN COLOMBIA

Legacy Sites

Treatment of contamination on legacy sites

- Identify targeted areas for treatment of contaminated materials
- Reduce mass of material to be treated
- Reduce cost
- Prevent contaminant movement and food-chain transfer
- Restore site to productive use e.g. Renewable Energy



Process Based Treatment

Treatment of process tailings and waters as they are generated

- Treat only contaminated wastes
- Prevent movement of contaminants and contamination of greater amount of materials
- Reduce waste volume being treated
- Metal recovery from water treatment and sale
- Reduced costs

- Demonstration on sites in Colombia
 - Mine Tailings
 - Contaminated soils
 - Mine Waters
 - Mercury and other heavy metals
 - Re-vegetation of remediated materials
 - Renewable energy crop establishment
 - Metal recovery from process waters

Thank-You & Questions

Contact: tony@ccuresolutions.com